8
Kajsa, Kasan, Kontúr, Kováč, Nepšinský, Sekereš

RoboCup – UTTP player
5

RoboCup - UTTP Player
Bc. Peter Kajsa, Bc. Michal Kasan, Bc. Branislav Kontúr, Bc. Dávid Kováč, Bc. Martin Nepšinský, Bc. Tibor Sekereš

Slovak University of Technology
Faculty of Informatics and Information Technologies
Ilkovičova 3, 842 16 Bratislava, Slovakia
TPteam06@googlegroups.com
Abstract. The article gives a short survey in the area of artificial intelligence where the main goal is to create a team of fully autonomous robots, which would be able to win the soccer world championship (against human opponents) by the year 2050. We are talking about project RoboCup. The main emphasis of this article is put on approaches which want to improve ways how to learn, maintain and extend very complex system consisting of many behaviors. We focused on the architecture of soccer player addressing non-functional requirements on the system. The article is also concerned about effective adding, removing and exchanging behaviors. Our prototype which describes new player’s structure is described in detail.
1 Introduction
 “RoboCup 2D” is an eight years old project at Faculty of Informatics and Information Technologies. Students try to develop and improve programs which simulate soccer player’s behavior. The basic idea is to show that not only people are able to think, but also robots. Teams consist of players, who compete against each other to win the tournament. We try to simulate player’s behavior and the rules of soccer match too. This project is also opportunity for students to implement their own strategies and apply new approaches focused on winning the tournament.
The oldest students’ teams had to develop programs which represent players’ behavior and successor teams try to add new behaviors or improve existing ones. In other words, the latest students’ team use previously created source code, documentation and supporting applications. Because of the complexity of players’ source code, teams of students have to focus on modularity and scalability, not only on functional part of the system. Simplicity of adding new behaviors, readability of source code or documentation has to be considered too.
There are many possibilities how to improve existing players. One way is taking inspiration from world-wide-successful RoboCup teams and the other is taking the projects developed by students of FIIT and making it better. This second way tries to show that ideas of our older schoolmates are also valuable. We decided for the second way.

One of the goals is re-factorization of existing player and changing the player’s structure to make every player’s behavior encapsulated and identifiable. Other goal is achieving simple interchangeability of behaviors. These structural changes focus on facilitation of these processes: adding, removing and exchanging behaviors, studying source code, etc.
2 The Loptoši Team
We decided to extend the last year’s team called Loptoši [3]. The source code of the player was platform independent and functionality of this player was very good. We decided to improve the structure of this player and all the other properties mentioned in the Introduction section.

Team Loptoši have built their player based on previous player FIITBA. In the documentation they state, that they concentrated on improving player’s architecture and the modularity of code. They presented their improvements like implementation of design patterns, which should improve the readability of code, removal of unused abstract classes, separation of long functions into simpler functions etc.

Regardless of poor source code quality we think many of improvements mentioned in the documentation were never implemented and from the object-oriented design viewpoint, player’s architecture is not very suitable. The relationships between core player classes are shown in the figure 1.

[image: image1.png]PlayerKernel

Playorskills

[PlayerTactics

[GoalieTactics

Fig. 1. Class diagram of core player classes

From figure 1, we can see that the core of the player/goalie is built by only three classes (PlayerKernel, PlayerSkills, PlayerTactics/GoalieTactics) what reflects the amount of code in each class. For example the class PlayerTactics has about 3500 lines of code and it contains many comments like: “What is this doing?” The functionality is then very hardly identifiable and changing of the source code often leads to unpredictable behavior. Inheritance was not used properly in this case, as it is not necessary to up cast from child classes to base class. The use of composition would be better in this case and the player should be split into more clearly understandable modules, not just three classes with unclearly roles.

For this reasons it is hard to understand the code and add new functionalities or repair the old ones. We also made some quality analysis of source code using two tools: Resource Standard Metrics and Understand for C++.
According these analyses, the source code has a several serious problem parts, e.g. cyclomatic complexity more than 10 (occurrence: 85 times), different count of operators new and delete in one file (occurrence: 22 times), more than one returns per one function (occurrence: 262 times). Most of them are caused by violation of any coding conventions.

We are going to re-factor this player and focus on improving the quality attributes of the source code. One of the goals is to establish code conventions and apply these conventions to the source codes.
These improvements will make the modifications of the player easier and developers can spare their time on more important things.
3 Behaviors and Our Player
RoboCup initiative tries to implement, re-factor and simulate an autonomous robot (player) which is able to behave, make decisions and play football. The player is very complex system consisting of many behaviors. This chapter deals with identification, division and modularity of behaviors.
3.1 Identification of Behaviors
Identifying the behaviors of the original player Loptoši was the hardest and the most complicated task during the analysis phase. To solve this task, our team was divided into two sub-teams. The first one was responsible for identifying behaviors in the source codes and the second one was responsible for identifying behaviors in documentation. We had to to search for the behaviors not only in documentation of the Loptoši player but we had to search in all documentations of the ancestor teams in the line from the first player created at faculty to the Loptoši player, which we have chosen to modularize. Going through all documentations was important, because every team in the evolution line of our player has added or changed some behavior. These changes were usually documented in the documentation of the ancestor teams only. This specification of behaviors in documentations, which we have created, can be used as a centralized documentation of the player. There wasn’t anything like this until now. Every team, who wanted to use or modify the player, had to spend a lot of time by studying various documentations and source codes.

After finding and analyzing behaviors in the source codes and documentation, we needed to match behaviors from the documentation to the behaviors found in the source codes. We were unable to find the documentation for all behaviors in the source codes and vice versa. Not all of behaviors found in the documentations were really implemented. This mismatch was created by the evolutionary development of the player and lack of documentation, e.g. one behavior was replaced by another one without being documented.
We gained knowledge about the functionality of the player by analyzing behaviors in source codes and documentation and it helped us to better understand the function and purpose of most of behaviors.
3.2 Division of Behaviors
All behaviors form an oriented graph with behaviors as vertices and usage of behaviors as edges. Any behavior can use another one. For example the behavior LookTo uses the behavior TurnNeckTo, the behavior PassBallTo uses the behavior Kick etc. We have divided the behaviors into two main categories:

· Elementary behaviors

· Higher behaviors

Elementary behaviors communicate with server directly. Usually, they don’t use any other behaviors. Higher behaviors communicate with the server by using elementary behaviors and other higher behaviors. We have decided that the highest behavior will be called Play. It will be using one of two lower behaviors: PlayWithoutBall or PlayWithBall. These two behaviors will be using other lower behaviors.
3.3 Modularity of Behaviors
One of our goals is to change the structure of the player and create one module per one behavior. The player created this way is easy to modularize and one module can be quickly replaced by another one. This is important, because future teams won’t need to study the whole source codes to modify some behavior. They will just need to study one module represented by one class.
4 Prototype of Our Player
As mentioned in previous sections, one of the goals of our work is re-factoring of the source code of the Loptoši RoboCup player and extracting behaviors in order to achieve modularity of the source code in the future. One of the basic principles of our architecture is that each of behaviors can use zero, one or more than one other behaviors. With this approach we divided behaviors into several tiers from the tier of the most complex behaviors, which use most other behaviors, to tier of elementary behaviors, which don’t use others behaviors, they just send commands directly to the RoboCup game server. Of course, each behavior communicates with the server directly or indirectly, using other behaviors.

Essential principles of our designed architecture are shown in the figure 2. Communication with the game server runs through elementary behaviors. The behaviors use data from the “Data and Information” module that stores the world state and other information.
We analyzed several architectures of different faculty and non-faculty players [1, 3, 4, 5]. Lots of them were quite interesting, but probably the most proper was architecture of the team 6th Sense [1].
The basic principle of 6th Sense architecture is placing one behavior into one module, different levels of abstraction between behaviors (not Layers) and the relation “uses” between two behaviors. Basic (lower) behaviors should serve for more complex (higher) behaviors and more complex behaviors should use “simpler” ones. The 6th Sense authors were expecting implementation to be more transparent, extensible, easier to document with high level of modularization. Obvious advantages of this architecture are described in detail in our documentation [2]. Here, we mention only few of them: scalability, removing of source code’s duplicity, source code’s readability and module’s replacement.
[image: image2.emf]cd

«execution environment»

Robocup Server

Elementary Behaviors Communication Interface

Data and

Informations

Behaviors

Manipulate

Stores

Use

Communicates

Fig. 2. Essential principles of our architecture.
4.1 Architecture of the Player
Our architecture consists of three elements:
· Data and Information – this element was implemented as DataStorage, while global functions are localized into CommonFunctions.h header file.
· Behaviors – this element is composed of individual behaviors in various tiers. Module for access and management of all behaviors was implemented as ModuleManager which acts like facade for using behaviors.
· Elementary behaviors communication interface – this element was realized via elementary behaviors.

These elements are described in more detail in next sections.
4.2 DataStorage - Data and Information
DataStorage module represents centralized storage for data and information that describe world state. These data and information are used by individual behaviors for their correct work on various tiers. Information related to individual behaviors are localized into structures because of easy identification and maintenance. DataStorage is implemented using the Singleton design pattern, so there is only one instance in the system which is accessed via the USE_MODULE macro, which calls the method returning the unique module instance.
4.3 ModuleManager - Management of Behavior Modules
The purpose of ModuleManager is to provide management of individual behavior modules. It also acts like a facade to access individual behavior modules. Each of behavior modules is registered and than stored into map of behavior modules, from which the relevant instance of a behavior module is returned as a result of client’s request. ModuleManager is also implemented using the singleton design pattern.

· In order to register a behavior module we use the method bool RegisterModule(string moduleClassName, ModuleInterface* moduleToRegister) which is supposed to register new behavior module by adding the class name and the reference to the behavior’s module into the map of behavior modules of ModuleManager. Method returns false if a module with this name already exists in the map or true if the registration was successful.

· The ModuleInterface* GetModule(string moduleClassName) method returns the instance of the relevant behavior’s module. This method returns a reference to the requested module or null if a behavior module with the given name does not exist.
· The ModuleManager::GetInstance() method returns the unique instance of ModuleManager class.
4.4 Behavior Modules
Every module implements the interface ModuleInterface that represents the base element in behavior class inheritance hierarchy. ModuleInterface defines the methods, which must be implemented by each behavior module. The ModuleInterface defines:

· A concrete behavior for behavior module is supposed to be implemented in the body of virtual void behave() method.
· Macro USE_MODULE(className) expands to the registration of behavior module in ModuleManager class (if necessary) and returns the instance of the requested behavior module.

Individual behavior modules are used directly in the source code via call of getNameofBehavior().Behave() method, where NameofBehavior is replaced by the name of the requested behavior.
4.5 Re-factoring the Source Codes

After the analysis phase we have designed new player’s structure and methodology, which we use to transform old source codes of the original player to the new structure. At the beginning we have identified two possible ways of transformation:

· from up to down

· from down to up

In the first case, higher behaviors are transformed before lower behaviors. It means main Play behavior is transformed at first and then simpler behaviors are transformed. In the second case (from down to up) lower behaviors are transformed before higher behaviors. It means elementary behaviors are transformed at first and then higher behaviors (like PlayWithoutBall, PlayWithBall and Play) are transformed. Both ways have their specific advantages and disadvantages. We have chosen the method from down to up because lower behaviors are easier to transform than higher at the beginning. The lower behaviors are then the building blocks of higher behaviors. Another advantage is that at each time we have a version of the player which can be compiled and run.

5 Conclusions
After completing the analysis phase we have designed a new architecture of the player and started with modularization of elementary behaviors. After modularizing few behaviors we assume, that this new architecture is much more effective and transparent. Big classes from original player have become smaller and more comprehensible. The modularization also helped to identify and repair several logical mistakes in the behaviors.

We have implemented almost all of the identified elementary behaviors until now and we are going to implement the rest. After finishing this, we are going to implement and re-factor complex (higher) behaviors like PlayWithBall and Play. We assume that this could accompanied by problems with cyclic dependencies of behaviors.
References
[1] Bebjak, M., et al.: RoboCup – tretí rozmer, Bratislava, FIIT STU, 2006, Team project – 6th Sense.
[2] Kontúr, B., et al.: RoboCup – nové stratégie, Bratislava, FIIT STU, 2007, Team project - UTTP.
[3] Kútny, M., et al.: RoboCup – nové stratégie, Bratislava, FIIT STU, 2006, Team project - Loptoši.
[4] Mešťaník, P., et al.: RoboCup – tretí rozmer, Bratislava, FIIT STU, 2005, Team project - Hazard.

[5] Zajac, J., et al.: Simulácia robotického futbalu, Bratislava, FIIT STU, 2004, Team project – FC Farmári.
� Supervisor: Ing. Marián Lekavý, Institute of Informatics and Software Engineering, Faculty of Informatics and Information Technologies STU in Bratislava.

IIT.SRC 2008, Bratislava, February 24, 2008, pp. 1-8 = + 1 - 1
8
.

