
RoboCup Soccer Server 3D Manual

March 22, 2008

Contents

1 System Overview 2
1.1 Server . 2
1.2 Monitor . 2

2 Soccer Simulation 3
2.1 Soccer Team . 3
2.2 Environment . 3
2.3 Players . 3

2.3.1 Create effector . 4
2.3.2 Init Effector . 4
2.3.3 Beam Effector . 4
2.3.4 Drive Effector . 4
2.3.5 Kick Effector . 5
2.3.6 Vision Perceptor . 6
2.3.7 Say Effector . 7
2.3.8 Hear Perceptor . 7
2.3.9 GameStatePerceptor . 8
2.3.10 AgentState perceptor . 9

3 Monitor and Trainer Protocol 9
3.1 init Expression . 9
3.2 info Expression . 10
3.3 Monitor Command Parser . 11

4 Scene Description Language 12
4.1 RubySceneGraph language . 12
4.2 File structure . 13
4.3 Node Expression . 14
4.4 Scene Graph templates . 14
4.5 Method Calls . 15
4.6 Language Reference . 16

1

4.6.1 BaseNode . 16
4.6.2 Transform . 16
4.6.3 SingleMatNode . 16
4.6.4 Axis . 16
4.6.5 Box . 17
4.6.6 Sphere . 17
4.6.7 CCylinder . 17
4.6.8 Body . 17
4.6.9 Collider . 18
4.6.10 BoxCollider . 18
4.6.11 SphereCollider . 18
4.6.12 CCylinderCollider . 18
4.6.13 CollisionHandler . 19
4.6.14 ContactJointHandler . 19
4.6.15 RecorderHandler . 19
4.6.16 Joint . 20
4.6.17 FixedJoint . 21
4.6.18 BallJoint . 21
4.6.19 HingeJoint . 21
4.6.20 Hinge2Joint . 21
4.6.21 UniversalJoint . 21

2

1 System Overview

To get started you should be somewhat familiar with the components of the system.
The soccer simulation consists of three important parts: the server, the monitor and the
agents.

1.1 Server

In order to work with the server you should be familiar with the SPADES [?][?] simulation
middleware. Some important concepts you should know about: The server is responsible
to start an agent process, i.e. it does not wait for an agent to connect as the 2D
simulation does. The SPADES library uses a database that contains information how to
start different agent types. It is called agentdb.xml, located in the ./app/simulator/
directory.

Agents connect via UNIX pipes to a SPADES Commserver. The use a length prefixed
format to exchange messages. The Commserver in turn communicates with the server.
In the default setup of the soccer server an integrated Commserver is started.

It is to possible start more than one Commserver in order to distribute agent processes
across different systems. Please see the SPADES manual for further details about how
to start and configure a remote Commserver. In this setup the 3d server has to be
configured to wait until all Commservers are connected before it unpauses the simulation.
The relevant settings are found in the server startup script rcssserver3D.rb.

These settings are ’Spades.RunIntegratedCommserver’ and ’Spades.CommServersWanted’.
The first setting configures if the integrated Commserver is started. Its default value
is ’true’. The second setting gives the number of Commservers the server will wait for,
before the simulation is initially unpaused. The integrated Commserver counts as one,
so the default value here is 1.

1.2 Monitor

The default monitor is called rcssmonitor3D-lite, located in the directory ./app/rcssmonitor3d/lite.
It is also used to replay logfiles that the server automatically creates (use the --logfile
<filename> option). The automatically generated logfile is called ’monitor.log’. You’ll
find it in the Logfiles/ directory below the directory in which you started the server.
A set of logfiles from 2004 RoboCup can be found at [?].

The implemented monitor protocol supports a command set to implement a trainer,
i.e to automatically recreate test situations on the field and to evaluate an agents behav-
ior. A ’monitor library’ is provided to help implementing custom monitor and trainer
applications, please see the ./app/rcssmonitor3d/lib directory. The protocol between
server and monitor is detailed further down in this text file.

A good starting point for your own agent implementations is the agenttest program in
the ./app/agenttest/ directory. This agent implements a simple kick and run behavior.

3

2 Soccer Simulation

2.1 Soccer Team

Your soccer team consists of a number of robots with equal capabilities. The programs
you should write to create a team exchange data with the (virtual) low level control
system delivered with the robots. Both perceptors and effectors of your robots work
with S-expressions, this is the syntax you know already from the 2D soccer simulator,
or maybe also from your favorite programming language :).

2.2 Environment

Some technical data of the environment and of your new robots:
The playing field is a plane with FIFA standard soccer field size (length between 100m

and 110m, width between 64m and 75m). Goal boxes and the ball are also standard
FIFA size: goals are 7.32m wide; the ball has got a diameter of 0.222m and weighs
between 0.41kg and 0.45kg. Because our agents are small and cannot jump, goals are
only 0.5m high – the official FIFA height is 2.44m.

FIFA does not say too much about gravity (probably because they can’t change it
anyway), but in our simulation, gravity is fixed to 9.81m/s.

Simulator steps are 0.01 seconds long. Connected monitors receive an update every
15th simulator step.

Many of the values contained in this text are subject to change and it is likely that
this text does not always reflect the current state of affairs. You’ll find the current
set of constants in the setup script that the server executes at startup, please see
./app/simulator/rcssserver3D.rb. After the first run of the server this file is copied
to a directory under your home directory, called /.rcssserver3d and is read back from
there on subsequent runs. Any experimental changes should happen there.

2.3 Players

In the current version of the simulator, robots are represented as spheres (until we can
come up with a more sophisticated representation next year). The diameter of all robots
is 0.44m, and each robots weighs 75kg.

Robots possess a kind of omnidrive, which adds some physical force to the robot
body. By using the omnidrive, it is possible to accelerate into any direction, and it is
also possible to jump very little. However, the omnidrive does only work if the robot is
actually touching the soccer field. If you stop accelerating, robots will still move for a
while, and you also cannot suddenly stop when moving with full speed (but you can use
it for breaking). The maximum speed and the maximum height for jumping up if yet to
be discovered.

When a player initially connects to the server you have to do two thing in order to
get started. At first you must create the robot type you want to use during the game.
Currently we are limited to the robot sphere described above. In later versions more
sophisticated robot models may be available. It is the job of the create effector to select

4

and create one robot type at startup. Further the player must receive a number and join
a team. This is the job of the init effector.

2.3.1 Create effector

When you initially connect to the simulator, your agent does not have any physical
representation. The only thing your agent has got is a ”CreatEeffector”. The idea of
the CreatEeffector is that you can request different effectors, perceptors or robot types.
Currently, there is only one fixed robot type, so the CreateEffector ignores all parameters.
For now, you should simply do ”(create)” at the beginning and you will get the default
robot type.

Example command: (create)

2.3.2 Init Effector

To set the team name and uniform number, you have to use the InitEffector. Prior to
initializing, your effectors and perceptors will not work properly.

Syntax: (init (unum <number>) (teamname <string>))
Example: (init (unum 7) (teamname RoboLog))

2.3.3 Beam Effector

Similar to the kickeffector, the initial plan was not to introduce any artificial actions like
”beaming” agents from one place to another place, similar to the ”move” command in
2d soccer server. Still, the plan is to develop the soccer simulation so that beaming can
disappear from the set of effectors.

However the problem was that due to limited time we had to do something about
moving agents to their half in before kick off mode. To remove ”beaming”, the referee
has to be extended to send yellow or red cards to players that don’t behave properly...
with your help :) we are going to work on this feature in the near future. Until then,
beaming of agents is allowed in beforekickoff mode.

The beam effector expects three coordinates, but currently forces the third component
to be zero, i.e. agents are only allow to move on the ground along the horizontal plane.

Syntax: (beam <x> <y> <z>)
Example: (beam -6.6 0 0)

2.3.4 Drive Effector

To use the omnidrive of the agent, you have to use the so called ”DriveEffector”, which
takes a cartesian vector (x y z) with a maximum length of 100 units. The x-coordinate
points towards the opponents team side of the field, z points up. With the DriveEffector,
you set a kind of motor force, i.e. if you want to drive full speed for a while, it is sufficient
to use the DriveEffector *once*. The force you set is applied at each simulator step until
you change it again. The DriveEffector works reliable, there is a small error for forces

5

along each axis (each up to 2% of the applied force). The error is normally distributed
around 0.0.

Using the omnidrive consumes battery. You get to know of battery states by reading
the AgentStatePerceptor. If the battery is empty, the omnidrive will stop working. It is
also possible to push away other robots. Using this feature to push away opponents is
discouraged :).

Syntax: (drive <x> <y> <z>)
Example command: (drive 20.0 50.0 0.0)

2.3.5 Kick Effector

To move the ball, you have the option of simply using the robots to push the ball into a
desired direction, or you can use the kickeffector to kick the ball. Originally, we did not
intend to create an artificial kickeffector. However, to make use of the 3rd dimension,
this was the easiest way. It is intended to remove this kind of kick effector in future
versions (not this years’ competition) in favor of a real physical device.

The kickeffector can accelerate the ball radially away from the robot body. The
kickeffector takes an angle as first argument. This is the latitudal angle (in degrees)
for accelerating the ball. It is restricted to a number between 0 and 50. The second
argument indicates the kicking power and this is a number between 0 and 100. It is
interpreted as the percentile of the maximum available power. The kickeffector adds a
force and a torque to the ball. This happens over a fixed number of simulation steps.
Currently 10 cycles are used. This corresponds to 1/10s simulation time. To kick the
ball, the ball has to be very close to the robot, i.e. it has to be within the so called
kickable margin of the player. Currently 0.04m are configured.

You cannot change the kicking angle in the horizontal plane. This means that you
have to move the robot so that it can kick into the desired direction. Right now, the
kickeffector is not very strong, because something like an offside rule is missing. It should
also not be possible to move other robots by kicking the ball against them anymore. (at
least not very much :) Like the DriveEffector, the kickeffector does only work if the
robot touches the soccer field.

The kickeffector noise has the following parameters:

• The angle error in the x-y plane is quite low and normally distributed around 0.0
with sigma = 0.02. The

• The latitudal angle error is normally distributed around 0.0. This angle error is
low with sigma = 0.9 at both extreme positions, i.e. 0 and at 50 degrees. Towards
the middle of the range the angle error gets higher with sigma up to 4.5.

• The kick power error is normally distributed around 0.0 with sigma = 0.4

Syntax: (kick <angle> <power>)
Example command: (kick 20.0 80.0)

6

2.3.6 Vision Perceptor

Your robots possess a special omnicam with some smart image processing software at-
tached :). Robots have a 360 degrees view. The VisionPerceptor delivers lists of seen
objects, where objects are either others robots, the ball, or markers on the field. Cur-
rently there are 8 markers on the field: one at each corner point of the field and one at
each goal post.

With each sensed object you get:

• The distance between the player and the object.

• The angle in the horizontal plane. Zero degree always points to the opponent goal.

• The latitudal angle. Here zero degree means horizontal.

Contrary to 2D soccer simulation, the vision system does not deliver object velocities.
Objects can be occluded by other objects (this is not completely implemented yet). All
distances and angles are given relative to the camera position. The camera is currently
located at the center of the robot sphere.

The noise parameters of the vision system are as follows:

• A small calibration error is added to the camera position. For each axis, the error
is uniformly distributed between -0.005m and 0.005m. The error is calculated once
and remains constant during the complete match.

• Dynamic noise normally distributed around 0.0

– distance error: sigma = 0.0965
– angle error (x-y plane): sigma = 0.1225
– angle error (latitudal): sigma = 0.1480

Syntax:

(Vision
(<Type>
(team <teamname>)
(id <id>)
(pol <distance> <horizontal angle> <latitudal angle>)
)

)

Possible values are as follows:

• ’Flag’ with <id> one of ’1 l’, ’2 l’, ’1 r’, ’2 r’

• ’Goal’ with <id> one of ’1 l’, ’2 l’, ’2 l’, ’2 r’

• ’Player’ with <id> being the uniform number of the player

7

Example Vision output:

(Vision (Flag (id 1_l) (pol 54.3137 -148.083 -0.152227)) (Flag (id
2_l) (pol 59.4273 141.046 -0.131907)) (Flag (id 1_r) (pol 61.9718
-27.4136 -0.123048)) (Flag (id 2_r) (pol 66.4986 34.3644 -0.108964))
(Goal (id 1_l) (pol 46.1688 179.18 -0.193898)) (Goal (id 2_l) (pol
46.8624 170.182 -0.189786)) (Goal (id 1_r) (pol 54.9749 0.874504
-0.149385)) (Goal (id 2_r) (pol 55.5585 8.45381 -0.146933)) (Ball (pol
6.2928 45.0858 -0.94987)) (Player (team robolog) (id 1) (pol 7.33643
37.5782 5.86774)))

2.3.7 Say Effector

To broadcast messages to other players, you have to use the SayEffector. Messages can
be sayMsgSize (for now 512) characters long, where valid characters for say messages
are the printing characters* except space and (). Messages players say can be heard
within a distance of audioCutDist meters (for now 50) by members of both teams. The
use of the SayEffector is only restricted by the limited capacity of the players of hearing
messages. See the Hear Perceptor section for a list of server variables affecting these
capacities.

* In the seven-bit ASCII character set, the printing characters are 0x20 to 0x7E.
Syntax:

(say <message>)

Example command:

(say player10_Pass)

2.3.8 Hear Perceptor

You get percepts from this perceptor when a player uses SayEffector and sends a message.
The format of the aural sensor message from the is:

(hear <time> <direction in degree> <message>)

<time> indicates the current time.
<direction in degree> is relative direction to sender (without noise) if it is another

player, otherwise it is "self" (without quotation mark).
<message> is the message. The maximum length is sayMsgSize bytes.
The server parameters that affect the Hear perceptor are:

• audioCutDist, default 50.0

• hearMax, default 2

• hearInc, default 1

8

• hearDecay, default 2

• sayMsgSize, default 512

A player can only hear a message if the player’s hear capacity is at least hearDecay,
since the hear capacity of the player is decreased by that number when a message is
heard. Every cycle the hear capacity is increased with hearInc. The maximum hear
capacity is hearMax. To avoid a team from making the other team’s communication
useless by overloading the channel the players have separate hear capacities for each
team. With the current values this means that a player can hear at most one message
from each team every second perceptor update.

If more messages arrive at the same time than the player can hear the messages actually
heard are undefined (The current implementation choose the messages according to the
order of arrival). This rule does not include messages from oneself. In other words, a
player can hear a message from himself and hear a message from another player in the
same perceptor output.

A message said by a player is transmitted only to players within audioCutDist meters
from that player. For example, a defender, who may be near his own goal, can hear a
message from his goal-keeper but a striker who is near the opponent goal can not hear
the message.

Example Hear output:

(hear 0.8 -179.99 Test_1)
(hear 0.4 self Test_2)

2.3.9 GameStatePerceptor

The GameStatePerceptor tells you about the current status of the game. The first
percept you get from this perceptor tells you about some of the game variables, like ball
weight and field size additionally.

Syntax: (GameState (<Name> <Value>) ...)
Possible values for <Name> are:

• time gives the current simulation time (as a float value) passed in seconds

• playmode gives the current playmode as a string. Possible playmodes are BeforeKickOff,
KickOff Left, ickOff Right, PlayOn, KickIn Left, KickIn Right, corner kick left,
corner kick right, goal kick left, goal kick right, offside left, offside right,
GameOver, Goal Left, Goal Right, free kick left, free kick right, unknown.

For an up to day list of all playmodes refer to ./plugin/soccer/soccertypes.h
Example GameState output:
(GameState (time 0) (playmode BeforeKickOff))

9

2.3.10 AgentState perceptor

The AgentStatePerecptor tells you about the current state of your agent, currently its
battery level and temperature.

Syntax:

(AgentState
(battery <battery level in percent>)
(temp <temperature in degree>)

)

Example AgentState output: (AgentState (battery 100) (temp 23))

3 Monitor and Trainer Protocol

The default monitor port for the soccer simulation is 12001. The server periodically
sends you lines of text that contain S-Expressions. The monitor log file, that contains
the recorded sequence of all expressions sent to the monitor is further used as the log file
format. It is automatically generated in Logfiles/monitor.log relative to the server
directory.

3.1 init Expression

Initially one Init expression is sent. An example init expression is given below. Note
that S-Expressions from the server are received as a single line. Their are reformatted
here for readability.

(Init
(FieldLength 104)(FieldWidth 68)(FieldHeight 40)
(GoalWidth 7.32)(GoalDepth 2)(GoalHeight 0.5)(BorderSize 10)
(FreeKickDistance 9.15)(WaitBeforeKickOff 2)(AgentMass 75)
(AgentRadius 0.22)(AgentMaxSpeed 10)(BallRadius 0.111)
(BallMass 0.425878)(RuleGoalPauseTime 3)(RuleKickInPauseTime 1)
(RuleHalfTime 300)
(play_modes BeforeKickOff KickOff_Left KickOff_Right PlayOn
KickIn_Left KickIn_Right corner_kick_left corner_kick_right
goal_kick_left goal_kick_right offside_left offside_right
GameOver Goal_Left Goal_Right free_kick_left free_kick_right)
)

Each subexpression of the init expression is a name value pair that gives one parameter
that the current instance of the simulation uses. The meaning of the different parameters:

• FieldLength,FieldWidth,FieldHeight: dimensions of the soccer field in meter

• GoalWidth, GoalDepth, GoalHeight: dimensions of the goals in meter

10

• BorderSize: the simulated soccer field is surrounded by an off field area. BorderSize
gives the extra space in meters relative to the regular field dimensions in meters

• FreeKickDistance: gives the distance in meters that agents of the opposite have
to adhere when a player carries out a free kick.

• WaitBeforeKickOff: gives the time in seconds the server waits before automati-
cally starting the game

• AgentMass: the mass of each agent in kg

• AgentRadius: the radius of each agent in m

• AgentMaxSpeed: the maximum speed of each agent in m/s

• BallRadius: the radius if the ball in m

• BallMass: the mass of the ball in kg

• RuleGoalPauseTime: the time in seconds that the server waits after a goal is scored
before switching to kick off playmode

• RuleKickInPauseTime: the time in seconds that the server waits after the ball left
the field before switching to the kick in playmode

• RuleHalfTime: the length of one half time in seconds

• play modes: lists the the different play modes of the soccer simulation. Later on
play modes are referenced by a zero based index into this list.

3.2 info Expression

After the initial init message is sent only Info expressions are sent. These expressions
contain the full state of the current simulation state. An example Info expression is
given below:

(Info (time 0)(half 1)(score_left 0)(score_right 0)(play_mode 0) (P
(pos 0 0 0))(P (pos 0 0 0))(P (pos 0 0 0))(P (pos 0 0 0)) (P (pos 0 0
0))(P (pos 0 0 0))(P (pos 0 0 0))(P (pos 0 0 0)) (P (pos 0 0 0))(P
(pos 0 0 0))(F (id 1_l)(pos -52 -34 0)) (F (id 2_l)(pos -52 34 0))(F
(id 1_r)(pos 52 -34 0))(F (id 2_r)(pos 52 34 0)) (G (id 1_l)(pos -52
-3.66 0))(G (id 2_l)(pos -52 3.66 0)) (G (id 1_r)(pos 52 -3.66 0))(G
(id 2_r)(pos 52 3.66 0)) (B (pos 0 0 10)))

Each subexpression of the info expression is a name value pair that contains infor-
mation about one aspect of the current simulation state. Not all subexpressions are
repeated. This concerns the positions of the field flags and the names of the two teams.
This information is only sent once. Further game state information like the score count,
and the current game state is only sent if it changed. The meaning of the different
expressions:

11

• Die: notifies the monitor that the soccer simulation is about to terminate

• time: the current simulation time in seconds

• half: the current game half, 0 means the first, 1 means the second game half

• score left, score right: the score count of the left and right team respectively

• team left, team right: gives the names of the left and right team respectively;
the information is only sent once as it remains static

• play mode: the current play mode as 0 based index into the play modes list given
in the init expression

• P: gives information about a player. This expression may contain further subex-
pressions.

– s: gives the team the player belongs to; 0 for the left, 1 for the right team
– id: gives the uniform number of the player
– pos: gives the position of the player as a three component vector
– last: if this subexpression is present, the player was the last to touch the

ball
– say: this expression gives the string the player sent using the optional SayEffector

• F: gives information about a flag on the field. Information about a flag is only sent
once, as it remains static

– pos: gives the position of the flag as a three component vector
– id: gives the name of the flag

• B: gives information about the ball

– pos: gives the position of the ball as a three component vector

• ack: acknowledges a command that is carried out by the server; carries a user
defined cooky string as parameter; see below for further explanation

3.3 Monitor Command Parser

A connected monitor can further send commands as S-Expressions to the server using
the monitor connection. These commands allow a connected monitor to set the current
playmode and to move players and the ball to arbitrary positions on the field. This
allows for the implementation of trainer clients.

Supported expressions are:

• (kickOff): start the soccer game, tossing a coin to select the team that kicks off
first

12

• (playMode <play mode>): set the current playmode. Possible playmodes are
given as strings in the play modes expression of the init expression the monitor
receives when it connects. Example: (playMode corner kick left)

• (agent(team [R,L])(unum <uniform number>(pos <x,y,z>)(vel <vx,vy,vz)).
This expression sets the position and velocity of the given player on the field. Ex-
ample: (agent (team L)(unum 1)(pos -52.0 0.0 0.3)(vel 0.0 0.0 0.0))

• (ball (pos <x,y,z>)): set the position of the ball on the field. Example: (ball
(pos 10,20,1))

• (dropBall): drop ball at its current position and move all players away by the
free kick radius.

• (getAck <cooky string>): experimental feature, currently disabled. Requests
an (ack <cooky>) reply from the server. The server will send the answer as soon
as the command is carried out. This is used to synchronize a trainer implementa-
tion wit the server. The getAck expression is appended behind one of the above
commands. Example: ((kickOff)(getAck kicked off))

4 Scene Description Language

Spark provides access to the managed scene graph in several ways. Besides the internal
C++ interface and external access via Ruby script language, an extensible mechanism
for scene description languages is implemented. This allows for both a procedural and
a description-based scene setup.

A scene is imported using one of any number of registered scene importer plugins,
each supporting a different scene description language.

4.1 RubySceneGraph language

Currently one S-expression-based importer is implemented. This reference language is
called RubySceneGraph. It maps the scene graph structure to the nesting of Lisp-like
s-expressions.

An s-expression is a list of elements. Each element is either an atom or is itself another
list of atoms. An atom is either a predefined keyword or a non empty string literal that
has no further syntactic structure. The syntax of s-expressions, notated using EBNF is
given in Listing 1.

cha rac t e r −> ”A” | . . . | ”Z” | ”1” | . . . | ”9” ,
atom −> cha rac t e r+
l i s t −> ”(” s e x p r e s s i o n ∗ ”) ”
s e x p r e s s i o n −> atom | l i s t

Listing 1: EBNF notation of s-expressions

13

On the semantic side the RubySceneGraph interpreter recognizes a set of special atoms.
The first atom in each subexpression determines its type. The set of keywords comprises
four atoms that allow the interpreter to distinguishes five different expression types.

• The RubySceneGraph expression is the header expression of every scene graph file.

• The node expression declares a new scene graph node.

• The importScene expression is replaced with the content of another scene graph
file.

• The template expression declares a set of parameters for a following scene fragment
that can later be reused like a macro.

• Every other expression type is interpreted as a method call.

Apart from the different expression types listed above a replacement mechanism is
implemented. Every atom literal starting with a dollar sign is interpreted as a template
parameter and replaced with its actual value.

We shall describe the semantic of the different expression types below together with
some small usage examples and a partial reference of available node types and methods.

4.2 File structure

The top level structure of a ruby scene file consists of two s-expressions. The first
expression must be the header expression. It allows the parser to confirm the file type
and to get information about the version of the used language.

The syntax of the header expression is (RubySceneGraph <major Version> <minor
Version>). Currently the only valid header states 0 for the major and 1 for the minor
version.

The header is followed by a single s-expression that contains the scene graph body.
Any further expression is discarded. The body expression consists of an optional single
template expression and a set of node expressions. The resulting structure is outlined
in listing 2. Note that lines starting with a semicolon are comment lines.

; the header expression
(RubySceneGraph 0 1)
(
; the body of the f i l e starts here

; declare this f i l e as a template
(template $lenX $lenY $lenZ $dens i ty $mater i a l)

; declare the top level scene graph node
(node Box

; children of the top level node go here
(node DragContro l l e r
)

14

)
)

Listing 2: File Structure

4.3 Node Expression

The scene graph consists of a tree of object instances, called nodes. Each node in
the scene graph is declared with the (node <ClassName>) expression. The ClassName
argument gives the name of a class registered to the Zeitgeist class factory system.

The semantic of a node expression is to instantiate a new scene graph object of the
given class type. The importer therefore relies on the Zeitgeist class factory system to
create the requested object. It is then installed as a child of the nearest enclosing node
expression. If there is no enclosing node expression then the node is a top level node of
the expressed scene graph.

The set of top level nodes are installed as children of the node below which the current
graph is imported. This is either the global root node of the system, or an insertion point
defined with the importScene expression within another scene graph file. The nesting
of node expressions therefore defines directly the structure of the resulting scene graph
with a very small syntactic overhead.

4.4 Scene Graph templates

The language further allows the reuse of scene graph parts in a macro like fashion. This
enables the construction of a repository of predefined partial scenes, or complete agent
descriptions. The macro concept is available through the (importScene <filename>
<parameter>*) expression. This expression recursively calls the importer facilities of
the system. It takes the nearest enclosing node expression as the relative root node to
install the scene graph described within the given file.

Note that the given file must not necessarily be another RubySceneGraph file but any
file type registered to the importer framework. This allows the nesting of scene graph
parts expressed in different graph description languages. An example application of this
feature is that parts of the resulting scene could be created by application programs
better suited to create 3D models. By now, we do not exploit this feature yet.

The list of parameters given to the importScene expression is passed on to the re-
sponsible importer plugin. If another ruby scene graph file is imported that declares a
template, they are substituted with its formal parameters.

A template declaration within the imported file has to meet the following syntax:
(template <parameterName>*). A parameter name is a string literal that is prefixed
with a dollar sign, see listing 2 for an example declaration. All parameter names that
follow within the body of the file are replaced with their actual content.

The usage example in listing 3 below assumes a box.rsg file. It uses that to construct
boxes with varying sizes and colors according to the template expression given in listing 2.

(RubySceneGraph 0 1)

15

(
(node Transform

(importScene box . r sg 1 3 0 .8 10 matRed)
)
(node Transform

(importScene box . r sg 2 4 0 .4 8 matBlue)
)

)

Listing 3: importScene example

4.5 Method Calls

A node created with the node expression above can further be parameterized with
method calls in order to modify its default properties. Every expression that does not
match one of the expression types described above is interpreted as a method call. It is
read as an s-expression that starts with the name of the function, followed by an optional
list of parameters, i.e. (<method name> <parameter>*).

Each method call is evaluated in the context of the nearest enclosing node expression.
The semantic of a method call is to invoke the Ruby script interface of the corresponding
C++ class, hence the name of this language.

This design decision allowed us to rapidly implement a complete scene description
language during the development of the simulator, that is automatically extended as
new methods are exported to Ruby, our primary scripting language.

Implementing a completely new scene description language with its own set of meth-
ods and property names would require the reimplementation of functionality that was
otherwise readily available from our script interface.

An example usage is the setup of a transform node. These node types are used to
position and orient nodes along a path in the scene graph relative to their respective
parent node. The transform node therefore provides a method SetLocalPos to set the
offset relative to its parent node. Likewise a box node provides a method to set the
extents of the represented box.

(RubySceneGraph 0 1)
(

(node Transform
(setLoca lPos 10 20 5)
(node Box

(se tExtent s 1 1 1)
)

)
)

Listing 4: Method call example

16

4.6 Language Reference

In this section we shall list the most common node types together with their most
important methods. The complete reference would be to extensive and is a moving
target as the simulator is constantly extended.

4.6.1 BaseNode

The BaseNode type is the base class for all scene graph nodes. The available methods
are:

• (importScene <string fileName>) imports the given scene as described in sec-
tion 4.4

• (setName <string name>) sets the user defined name of the node. This is used
to reference nodes within path expressions.

4.6.2 Transform

The Transform node type positions and orients its child nodes relative to its respective
nearest parent transform node. The available methods are available:

• (setLocalPos <float x> <float y> <float z>) defines the relative position

• (setLocalRotation <float x> <float y> <float z>)) defines the relative ro-
tation in degrees

• (setLocalTransform <float m00> ... <float m33>) defines the local 4x4 ro-
tation matrix

4.6.3 SingleMatNode

The SingleMatNode is an abstract base class for all nodes that display an object using
a single material property, e.g axis, box, sphere and capped cylinder. The following
method is available:

• (setMaterial <string name>) uses the given material to draw the node

4.6.4 Axis

The Axis node is a SingleMatNode that displays axes of coordinates using colored per-
pendicular lines. The default is to draw lines of unit length. The following method is
available:

• (setSize <float size>) sets the length of each draw axis line

17

4.6.5 Box

The Box node is a SingleMatNode that displays a cube with the given extents. The
default is to draw a unit box. The following method is available:

• (setExtents <float x>) <float y> <float z> sets the extent of the box along
the corresponding axis.

4.6.6 Sphere

The Sphere node is a SingleMatNode that displays a sphere with the given radius. The
default is to draw a unit sphere. The following method is available:

• (setExtents <float radius>) sets the radius of the sphere

4.6.7 CCylinder

The CCylinder node is a SingleMatNode that displays a capped cylinder with the given
radius and length. The default is to draw a cylinder with unit length and radius. The
following method is available:

• (setParams <float radius> <float length>) sets the length and the radius of
the capped cylinder

4.6.8 Body

The Body node represents the physical aspect of a simulated object. The following
methods are available:

• (enable) allows the body to take part in the physical simulation

• (disable) prevents the body to take part in the physical simulation

• useGravity <bool f>) specifies whether the body is influenced by gravity

• setSphere <float density> <float radius>) sets the mass distribution of for
a sphere

• setSphereTotal <float mass> <float radius>) sets the mass distribution for
a sphere

• setBox <float density> <float size>) sets the mass distribution for a box

• setBoxTotal <float mass> <float size>) sets the mass distribution for a box

• setCylinder <float density> <float radius> <float length>) sets the mass
distribution for a cylinder

18

• setCylinderTotal <float mass> <float radius> <float length>) sets the mass
distribution for a cylinder

• setCappedCylinder <float density> <float radius> <float length>) sets
the mass distribution for a capped cylinder

• setCappedCylinderTotal) sets the mass distribution for a capped cylinder

• setMass <float mass>) sets the total mass of the body

• setVelocity <float x> <float y> <float z>) sets the initial velocity of the
body

• setAngularVelocity <float x> <float y> <float z>) sets the initial angular
velocity in degrees

4.6.9 Collider

The Collider is an abstract base class for all supported collision primitives. It further
manages the set of CollisionHandler child nodes that react to collision events detected
by a Collider instance. The available method is:

• (addCollisionHandler <string ClassName>) installs a collision handler node
below the Collider. This i a convenience function that has the same effect as
installing the collision handler using a node expression. If no collision handler is
installed the default ContactJoint handler is installed during runtime.

4.6.10 BoxCollider

The BoxCollider is a Collider node that implements the box collision primitive. The
default is to create a unit sized box collider. The available method is:

• (setBoxLengths <float x> <float y> <float z>) sets the extents of the col-
lision primitive.

4.6.11 SphereCollider

The SphereCollider is a Collider node that implements the sphere collision primitive.
The default is to create a unit sized sphere collider. The available method is:

• (setRadius <float radius> sets the radius of the collision primitive.

4.6.12 CCylinderCollider

The CCylinderCollider is a Collider node that implements the capped cylinder collision
primitive. The default is to create a capped cylinder with unit length and radius. The
available method is:

19

• (setParams <float radius> <float length>) sets the radius and length of the
collision primitive.

• (setRadius <float radius>) sets the radius of the collision primitive.

• (setLength <float length>) sets the length of the collision primitive.

4.6.13 CollisionHandler

The CCylinderCollider node is an abstract base class for handlers that take action in
response to a collision. To each Collider instance one ore more CollisionHandlers are
registered. There are no methods available in this base class.

4.6.14 ContactJointHandler

The ContactJointHandler is a CollisionHandler node that creates an ODE contact joint
between the two bodies associated with the two affected collision primitives. Contact
joints are used to resolve a collision, i.e. to generate the appropriate force that does not
allow two bodies to interpenetrate. The available methods are available:

• (setContactBounceMode <bool set>)

• (setContactBounceValue <float value>)

• (setMinBounceVel <float velocity>)

• (setContactSoftERPMode <bool set>)

• (setContactSoftERP <float erp>)

• (setContactSoftCFMMode <bool set>)

• (setContactSoftCFM <float cfm>)

• (setContactSlipMode <bool set>)

• (setContactSlip <float slip>)

• (setContactMu <float mu>)

All methods above enable and set the corresponding value of the ODE contact struc-
ture. Please refer to the ODE user guide [?] for details.

4.6.15 RecorderHandler

The RecorderHandler is a CollisionHandler that accumulates collision information of
the Collider it belongs to. It aids for example in the implementation of bumper sensors
or in the implementation of game rules. There it is used to detect if agents are in certain
areas of the playing field. These areas are for example expressed as box colliders. No
methods further are available through the script interface.

20

4.6.16 Joint

The Joint node is an abstract base class for all joints. It defines a relationship (a
constraint) that is enforced between two bodies so that they can only have certain
positions and orientations relative to each other.

Note that the joint geometry parameter setting functions should only be called after
the joint has been attached to bodies, and those bodies have been correctly positioned,
otherwise the joint may not be initialized correctly. If the joint is not already attached,
these functions will do nothing.

Note that joint nodes are positioned and orientated according to the parent transform
nodes. The available methods are:

• attach(<string path1> <string path2>) attaches the joint to some new bod-
ies. If the joint is already attached, it will be detached from the old bodies first. To
attach this joint to only one body, omit the second path parameter. This effectively
attaches the body to the static environment.

The path expression follow the common Unix syntax and are relative to the joint
node. Object instances are referred by the name set using the SetName function,
using "/" as the path separator and ".." to refer to the parent node.

– (setAnchor <float x> <float y> <float z>) sets the anchor point in lo-
cal coordinates relative to the joint node.

• setHighStopDeg)

• (setLowStopDeg)

• (setHighStopPos)

• (setLowStopPos)

• (setBounce)

• (setCFM)

• (setStopCFM)

• (setStopERP)

• (setSuspensionERP)

• (setSuspensionCFM)

• (setLinearMotorVelocity)

• (setAngularMotorVelocity)

• (setMaxMotorForce)

The last block of methods above set the corresponding values of the ODE joint struc-
ture. Please refer to the ODE user guide [?] for details.

21

4.6.17 FixedJoint

The FixedJoint node represents a joint that maintains a fixed relative position and
orientation between two bodies, or between a body and the static environment.

4.6.18 BallJoint

The BallJoint node represents a ball and socket joint connects two bodies at an anchor
point. It enforces a constant distance of the two bodies to this anchor. Further it keeps
a constant facing of each body towards the anchor point. The two bodies can otherwise
rotate freely around the anchor point.

4.6.19 HingeJoint

The HingeJoint node represents a hinge joint. This joint type connects two rigid bodies
along a single axis that passes through a defined anchor point. The axis is fixed to the
z axis in the local coordinate system of the node. This can be adjusted using a parent
transform node. Like the ball and socket joint it enforces a constant distance and facing
with respect to the anchor point. The rotational freedom is however restricted to the
defined axis.

4.6.20 Hinge2Joint

The Hinge2Joint node represents a two-hinge joint. It acts like two hinge joints con-
nected in series. Each hinge joint defines a different hinge axis but shares the same
anchor point. The two axis are fixed to the x and z axis in the local coordinate system
of the node. This can be adjusted using a parent transform node. This joint type is
commonly used to simulate the steering wheel of a car. In this case the first axis allows
the steering of the wheel and the second axis allows the wheel to rotate.

4.6.21 UniversalJoint

The UniversalJoint node represents a so called universal joint. It acts like a ball and
socket joint that constrains an extra degree of rotational freedom. The universal joint
works on two perpendicular axes, one defined on each body. These axes, fixed to the x
and z axes in the local coordinate system of the joint are forced to stay perpendicular.
This means that the rotation of the two bodies about the axis perpendicular to the two
other axes will be equal. So, if any of the two bodies turns around the axis, the other
will turn as well.

22

	System Overview
	Server
	Monitor

	Soccer Simulation
	Soccer Team
	Environment
	Players
	Create effector
	Init Effector
	Beam Effector
	Drive Effector
	Kick Effector
	Vision Perceptor
	Say Effector
	Hear Perceptor
	GameStatePerceptor
	AgentState perceptor

	Monitor and Trainer Protocol
	init Expression
	info Expression
	Monitor Command Parser

	Scene Description Language
	RubySceneGraph language
	File structure
	Node Expression
	Scene Graph templates
	Method Calls
	Language Reference
	BaseNode
	Transform
	SingleMatNode
	Axis
	Box
	Sphere
	CCylinder
	Body
	Collider
	BoxCollider
	SphereCollider
	CCylinderCollider
	CollisionHandler
	ContactJointHandler
	RecorderHandler
	Joint
	FixedJoint
	BallJoint
	HingeJoint
	Hinge2Joint
	UniversalJoint

